Rethinking Operating Models in the Age of AI
Venue 42, 5 Times Square, NYC
October 24 | 8:30 Onwards
Register NowIn an age where the importance of data needs no emphasis, it is no surprise that asset managers have begun to accelerate their collection of information from multiple sources in varying amounts. These sources can range from a file provided by a broker or fund admin to a market data provider. Although it rarely occurs, there are times when historical data can be incorrectly provided or maintained by the data source. In a unitemporal scenario, a user can rectify the historical record of data for the timeframe in which inaccurate reference data was provided or maintained. However, the user erases the previous record that was once thought of as correct in doing so.
For example, there might be a scenario of complying to new regulations and audits where the user might want to preserve both records for future use.
A conventional approach to addressing the problems posed by the unitemporality of data is to make multiple copies corresponding to the time when a historical change is introduced. Multiple copies of data introduces vulnerabilities in integrity and consistency as there will be increased overheads attributing to the need for more storage and duplication of efforts in keeping reference data in sync.
However, one can maintain both sets of records, the past variant which was thought of as correct and the newly rectified copy of reference data, without the overhead mentioned above through bitemporality.
Bitemporal data denotes values of data corresponding to two dimensions of time: knowledge date and effective date. While knowledge date is the date on which the data is entered into the application, effective date is the date for which the data is being maintained within the application itself.
The below diagram represents the end-of-month price of a commodity over a January to November timeframe. As you can see, the user has made changes to the corresponding reference data for the months of March, April, May and June. In the month of November, they realized that the data was erroneous. From here, the user can view the data corresponding to the 31st of March, also known as the effective date, as the user thought it was true on the 31st of March, also known as knowledge date, corresponding to $185.16. With the help of bitemporal data, the user can also view the rectified price of $188.16 for the 31st of March date by choosing to view the data as is on the 30th of November, the new knowledge date, without affecting the storage of the previous value of $185.16.
As depicted in the diagram below, users can traverse and view the data based on both the knowledge date and effective date.
With the help of IVP Security & Reference Master, users can easily perform actions on such bitemporal data through an intuitive user interface without relying on SQL queries and extensive programming.
Bitemporality goes beyond just preserving historical data. Amidst the waves of reporting and regulatory demands of the asset management industry, it strengthens data governance through the addition of a new timeline.
Learn more about IVP Security and Reference Master or contact us at sales@ivp.in.
Click here for more stories.
Latest blogs delivered right to your inbox
Discover the latest trends, find out how your peers are accelerating their digital transformations, get updates on evolving products, and more.